珠海制備純化價格
V錐流量計的原理:塔形(V形錐)流量計與其它差壓式流量儀表原理相同,也是一種節流式差壓流量計。塔形(V形錐)的出現,打破了沿襲近百年的結構模式,使得節流式差壓儀表產生了質的飛躍。塔形(V形錐)流量計的重大突破在于變流體在管道中心中心收縮為邊壁收縮。近年來,我們在原有V形錐*的優點上,我們又研制開發了具有多項防堵的塔形流量計。該流量計采用了多孔取壓、環室取壓,一體化安裝等多項技術。廣泛用于特臟污流體中的計量(如:鋼鐵廠的焦爐煤氣、高爐煤氣等)。
質譜技術是一種鑒定技術,在有機分子的鑒定方面發揮非常重要的作用。它能快速而極為準確地測定生物大分子的分子量,使蛋白質組研究從蛋白質鑒定深入到高級結構研究以及各種蛋白質之間的相互作用研究。
隨著質譜技術的發展,質譜技術的應用領域也越來越廣。由于質譜分析具有靈敏度高,樣品用量少,分析速度快,分離和鑒定同時進行等優點,因此,質譜技術廣泛的應用于化學,化工,環境,能源,醫藥,運動醫學,刑事科學技術,生命科學,材料科學等各個領域。
珠海制備純化價格KCB18.3~83.3型泵采用三個耐油橡膠圈和中間襯隔的一個擋圈組成,調節壓緊蓋上的兩只螺母來調節密封的程度,軸承采用銅基粉末含油軸承。另外,不銹鋼齒輪泵均可采用填料密封以彈性好、耐高溫和低溫、化學性質穩定且有自潤滑性能的柔性石墨做為填料。用彈性聯軸器直接與驅動電機聯接,并安裝在公共鑄鐵底盤上。泵體、軸承座等為灰鑄鐵件,齒輪用優質碳素鋼材制作,亦可根據用戶特殊需要用銅材料或不銹鋼材料制作不銹鋼齒輪泵特性不銹鋼齒輪泵結構簡單緊湊,使用和保養方便。
質譜儀種類繁多,不同儀器應用特點也不同,一般來說,在300C左右能汽化的樣品,可以優先考慮用GC-MS進行分析,因為GC-MS使用EI源,得到的質譜信息多,可以進行庫檢
質譜儀
索。毛細管柱的分離效果也好。如果在300C左右不能汽化,則需要用LC-MS分析,此時主要得分子量信息,如果是串聯質譜,還可以得一些結構信息。如果是生物大分子,主要利用LC-MS和MALDI-TOF分析,主要得分子量信息。對于蛋白質樣品,還可以測定氨基酸序列。質譜儀的分辨率是一項重要技術指標,高分辨質譜儀可以提供化合物組成式,這對于結構測定是非常重要的。雙聚焦質譜儀,傅立葉變換質譜儀,帶反射器的飛行時間質譜儀等都具有高分辨功能。
質譜分析法對樣品有一定的要求。進行GC-MS分析的樣品應是有機溶液,水溶液中的有機物一般不能測定,須進行萃取分離變為有機溶液,或采用頂空進樣技術。有些化合物極性太強,在加熱過程中易分解,例如有機酸類化合物,此時可以進行酯化處理,將酸變為酯再進行GC-MS分析,由分析結果可以推測酸的結構。如果樣品不能汽化也不能酯化,那就只能進行LC-MS分析了。進行LC-MS分析的樣品是水溶液或甲醇溶液,LC流動相中不應含不揮發鹽。對于極性樣品,一般采用ESI源,對于非極性樣品,采用APCI源。
發展史
早在19世紀末,E.Goldstein在低壓放電實驗中觀察到正電荷粒子,隨后W.Wein發現正電荷粒子束在磁場中發生偏轉,這些觀察結果為質譜的誕生提供了準備。
臺質譜儀是英國科學家FrancisWilliamAston于1919年制成的。Aston用這臺裝置發現了多種同位素,研究了53個非放射性元素,發現了天然存在的287中核素中的212中,并次證明了原子質量虧損。為此他獲得了1922年諾貝爾化學獎。
到20世紀20年代,質譜逐漸成為一種分析手段,被化學家采用;從40年代開始,質譜廣泛用于有機物質分析;1966年,M.S.B,Munson和F.H. Field報
質譜分析原理
到了化學電離源(Chemical Ionization,CI),質譜次可以檢測熱不穩定的生物分子;到了80年代左右,隨著快原子轟擊(FAB)、電噴霧(ESI)和基質輔助激光解析(MALDI)等新“軟電離"技術的出現,質譜能用于分析高極性、難揮發和熱不穩定樣品后,生物質譜飛速發展,已成為現代科學前沿的熱點之一。由于具有迅速、靈敏、準確的優點,并能進行蛋白質序列分析和翻譯后修飾分析,生物質譜已經*地成為蛋白質組學中分析與鑒定肽和蛋白質的重要的手段。質譜法在一次分析中可提供豐富的結構信息,將分離技術與質譜法相結合是分離科學方法中的一項突破性進展。如用質譜法作為氣相色譜(GC)的檢測器已成為一項標準化GC 技術被廣泛使用。由于GC-MS 不能分離不穩定和不揮發性物質,所以發展了液相色譜(LC)與質譜法的聯用技術。LC-MS可以同時檢測糖肽的位置并且提供結構信息。1987年*報道了毛細管電泳(CE)與質譜的聯用技術。CE-MS 在一次分析中可以同時得到遷移時間、分子量和碎片信息,因此它是LC-MS的補充。
在眾多的分析測試方法中,質譜學方法被認為是一種同時具備高特異性和高靈敏度且得到了廣泛應用的普適性方法。質譜的發展對基礎科學研究、國防、航天以及其他工業、民用等諸多領域均有重要意義。
一部分未被捕集的塵粒也由此逃失。對于捕集、分離5-1m以上的粉塵效率較高。影響除塵骨架運行因素:除塵骨架的尺寸的影響:在除塵骨架的幾何尺寸中,以除塵骨架的直徑、氣體進口以及排氣管形狀與大小為重要的影響因素。氣體參數對除塵骨架性能的影響:包括氣體流量的影響,氣體含塵濃度的影響,氣體含濕量的影響,氣體的密度、黏度、壓力、溫度的影響等。除塵骨架內壁粗糙度的影響:濃縮在壁面附近的粉塵微粒,會因粗糙的表面引起旋流,使一些粉塵微粒被拋入上升的氣流,進入排氣管,降低了除塵效率。